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ABSTRACT

A theory of ferromagnetism for general spin, approximately

valid through the entire temperature range, is given. At low

temperatures the magnetization agrees with the Dyson results,

having no term in T3 and having a term in T equal to that

fourd by Dyson in first Born approximation; terms arising

from the approximations of the theory first appear in order

T3(2S + I, so that a spurious T3 term does appear for S = 1/2,

but for no other spin. Curie temperatures are within a few

percent of the Brown and Luttinger estimates for spins greater

than unity, and agree within one percent of the Domb and

Sykes estimate of the rge spin limit. The susceptibility at

high temperatures agrees with the Opechowski expansion to

terms in l/T2. The quasi-particle energies are renormalized

by the energy at low temperature and by the magnetization

at higher temperature. The Green function is decoupled by a

physical criterion involving self-consistency of the decoupling

at all temperatures. The Green function method is extended

to higher spin by a technique of parametrizing the Green

function and explicitely finding the functional dependence

on this parameter by solution of an auxiliary differential

equation.



Introduction

The Heisenberg model of a ferromagnet has been theoretically

analyzed by Dyson(') by series expansion in powers of T, valid

at low temperatures, and by Opechowski(2) by series expansion
1

in T, valid at very high temperatures. We here develop an

approximate theory which covers the entire temperature range,

including the particularly interesting intermediate region

in the neighborhood of the Curie temperature, and which agrees

satisfactorily with the rigorous results at both very low

and very high temperatures.

At low temperatiures the magnetization has terms of order

T 2  T/2 T / 2 which agree with the Dyson results, it properly

3 . 4has no term in T3 , and the term in T is equal to that found

by Dyson in first Born approximation. Trms arising fro" the
3(2S + 1)A

approximation in the theory first arise in order T

so that the case of S = 1/2 is an exception to the above

statements, having a spurious T5 term. Curie temperatures

are quite close ( e3% for spin 2) to the values estimated by

Brown and Luttinger (3 ) by extrapolation of the high temperatures

series expansion, except for very small values of spin (again

the case of spin 1/2 is particularly unsatisfactory). The

Curie temperatures agree within 1% with the estimate of Domb

and Sykes(4)for the high spin limit. The susceptibility at

high temperatures for all spin values agrees with the Opechowski(2)



expansion to terms in I/T2.

The quasi-particle energies are equivalent to simple

spin wave energies "renormalized" by a factor which is

proportional to the thermodynamic energy at low temperatures,

but which becomes proportional to the magnetization at higher

temperatures.

An heuristic interpretation of the renormalization of

quasi-particle energies has been given by Keffer and Loudon (5 ) .

They point out that, at low temperatures where only long wave

length spin waves are excited, the local magnetization direction

varies slowly through the crystal. Excitation of an additional

spin wave is analogous to excitation of a ripple relative to

this slowly varying local magnetization. The effective

exchange integral determining the energy of this ripple is

influenced by the angle between neighboring spins in the

slowly varying background medium. This angle also determines

the thermodynamic energy; hence the renormalization of the

spin wave energy by the thermodynamic energy. However at

higher temperatures the thermally excited excitations have

wave lengths comparable to the inter-spin distance, and

the correlation distance in the background medium is as short,

or shorter, than the wave length of the particular excitation

being considered. In this region our results indicate that

the effective exchange integral is influenced by the angle
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relative to the average magnetization; that is, the spin wave

energies are renormalized by the average magnetization.

The Heisenberg ferromagnet with spin 1/2 was analyzed by
(6)

Tyablikov 6 j using the technique of double-time temperature-

dependent Green functions(7'8 ) . Extension of the theory to

higher spin has been achieved recently by Tahir-Kheli and

ter Haar(9 ). The present theory differs from those applica-

tions of the Green function method in two respects. First,

the decoupling of the higher order Green functions is guided

by a plausible physical criterion, Second, the method of employing

Green functions for general spin is simplified; the Green

function is parametrized and the functional dependence on

this parameter is found explicitely by solution of an

auxiliary differential equation. This single differential

equation replaces the 2S simultaneous Green function

equations in the method of Tahir-Kheli and ter Haar (9 ).



2. The Green Function

Mne problem to be considered is the statistical

mechanics of the system described by the Hamiltonian

C43

where pLS is the magnetic moment per ion; H is the applied

magnetic field (in the positive z-direction); :g is the

spin operator (in units of t) for the ion at site g, and

J(g-f) is the exchange integral between ions at sites g and f.

The exchange integral is assumed to be a function only of the

distance between ions; it is not restricted to nearest

neighbors or to only positive values, but it is assumed that

the ground state of the system is a ferromagnetically aligned

state.

The temperature-dependent retarded Green function

involving the two operators A and B, <«A(t); B > , is defined

by (8)

(2)

where A(t) is the Heisenberg operator at time t; .(t) is



unity for positive t and zero for negative t; square

brackets denote a commutator; and single angular brackets

denote an average with respect to the canonical density

matrix of the system at temperature T. The Fourier transform

of the Green function is a function of W (or of E =4),

and is denoted by <<A E BE It satisfies the equation of motion (8 )

E E"

(3)

If this equation can be solved for <<A;B> E one then

extracts knowledge of the correlation function <BA(t)> from

the relation
(8 )

-- 0 Af w ./4T) -

Equations (3) and (4) are the only equations required for

the application of the Green function method.



For reasons which will become evident subsequently we

consider the Green function

~L<< (5)

where a is a parameter. The Fourier transform of this Green

function, GE (g,l), satisfies the equation of motion (eqn. 3)

wherer -

S-<[s e S (7)

he commutator of S with the Hamiltonian, required

in the last term of equation (6), is easily computed, giving

1 -5 TfaC\/~S 3 t (8)

The remaining problem is to express the higher-order Green

function on the right in terms of two-particle Green functions,

so that equation (8) can be explicitely solved for GE (g,1).
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3. A Decoupling Approximation

The essential approximation in the methods of Tyablikov and of

Tahir-Khel'L and ter Haar consists of ignoring the fluctuations of

Sz replacing this operator by its average value:

g

This approximation results in the magnetization renormalization of

quasi-particle energies, in disagreement with the low-temperature

theory.

The decoupling approximation to be used here is most clearly

described for the special case of spin .. In that case we can

write Sz in either of the following forms
g

5 5 5 (10)

=- S WlO

or, multiplying the first of these equations by an arbitrary

parameterocand the second by (1 -0 ) and adding,

S1 S4- ( L_!'Sh4 (12)

The Green function <KS $ 5 ; 3 is reasonably de-

coupled in the symmetric form*

and similarly for the Green function KSS S t>>.

Thus the identity (12) leads to

*The remaining "contraction",<3 + ><( .g B vanishes

because the operator Sg Sf is not diagonal in the total z-com-

g f
ponent cf spin..



«5 5 s; < <S~ (

Ift(is chosen as unity the result corresponds to decoupling on the

basis of identity (10);o(= o corresponds to decoupling on the basis

of identity (iI);o(= -1 corresponds to decoupling on the basis

of the identity 3 - S + Sg+ S . Thus we are faced with the

possibility of obtaining a correction to the Tyablikov decoupling

with either a positive or negative sign, or no correction at all,

or any intermediate value, depending on the choice of o. Clearly

a physical criterion is required at this point.

The operator S S+ in equation (10) represents the deviation

of Sz from +S. It is this operator S-S+ which is treated approxi-

mately when decoupling on the basis of equation (10). It therefore

seems reasonable to use equation (10) when the deviation from

S z = S is small; that is,when S.
1 -

Similarly, the operator T (S+S - - S-S+ ) in equation (11)

represents the deviation of Sz from zero, and it therefore is

reasonable to use equation (11) as the basis of decoupling when

Both of the above observations are contained in the choice

5-2 (15)

S
for then equation (12) becomes

5 (16)

The operator in brackets, which is to be decoupled, represents the



deviation of Sz from <SZ and should be self-consistently small in

all temperature regions.

inserting the above value of ointo the decoupling equation (19)

gives

<(pc> T~(; ~($B (17)

This is the basic decoupling approximation for spin 1; we now

generalize it for higher spin.

The analogue of equation (10), for general spin, is

S' = (S4-) -(Sa)2.- ,S4.
Sa( sa (18)

whereas equation (11) remains true. Decoupling as before, and

neglecting* the fluctuations of (SZ) 2 , we find in this case as well

<< S~B -<5>(s ; X~~4><~ 13 (19)

wherexis the fractional contribution of the identity (18), and

(1-c) is the contribution of the identity (11), to this result.

Unfortunately S-S + is no longer the only operator treated ap-
gg

proximately in decoupling equation (18), and the interpretation

of the decoupled operator as being the deviation from Sz = + S

is no longer true. Hence the choice of%(is no longer quite so

evident. However,

*The Green function >(S) S; , > also can be symmetrically

decoupled, but the results are of the same form as those obtained

by the simpler procedure above.



we determine it by the following requirements:
1

a) For S = x ,should reduce to our previous result or to= sZ s.

b) For <sZ> = o,t should vanish. This requirements follows

from the fact that identity (11) retains its interpretation

for arbitrary S.

c) For <sz> W- S we expect that Sz should have the form

Sz 'S - n, where n is a deviation which is of order unity

rather than of order S.

Requirement c) implies that should be of order unity,

rather than of order S, at low temperatures. Now 1 -S S+>is the
2S g g/'

spin deviation in lowest order ;similarly <Sg S+>will be of order

2S if f and g are closely coupled. Hence we take

=S(20)

and it is clear that this satisfies all of the physical requirements

above. Equations (19) and (20) characterize the basic decoupling

approximation of the theory.

* The appearcknce of 2S here corresponds to the identification of

S and S- respectively asf2-S a+ and 2S a- in the leading terms

both of the Dyson and the Holstein-Primakoff transformations. Here
+

a and a are destruction and creation operators of elementary

boson-type excitations,
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4. Solution of the Green Function Equation

Inserting the decoupling approximation into the equation of

motion (8) gives

These equations are a set of coupled equations for various

pairs of sites (g, I), (f, I). Translational invariance dictates

consideration of the spatial Fourier transforms

Q \ (L 4-1) - K O

T (K. ) "' (3,R (22)

(23)

(4L

Here g.k denotes the vector product R k, where R is the positiong g

vector of the g-site. Equation (21) then implies

or7 F5

K ( )



where

K
a

The correlation function which can be obtained from GE (k) by

equation (4) is the quantity_-j(k,a), defined in equation (24). In-

serting equation (2b) in (4), and taking t = o, we thereby obtain

e E  ' /,AT 
(2d)

Equation (26), together with eq. (27) defining E(k), equation

(24) defining69(k,a), and equation (7) defining6(a), is the basic

equation of the theory. It must, however, be augmented by an ex-

plicit relationship betweenAand 0, and it is this step which

complicates the problem for spin>'.
1

The problem which distinguishes the simple case of spin . from

the more complicated case of higher spin becomes evident if we
1

particularize our solution temporarily to S = 1. We also take

a = o, and we note from eqs.(24) and (10) that

a. (29)

Thus F(o) is simply related to the magnetization. NZ(o) is the

total number of spin reversals in the crystal, andV(k,o) is the

occupation number of the basic excitation of wave vector K

Similarly, from equation (7)

4( = .6> (0
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e-' Hence equations (28) and (30) determine li(k,o) as a function

o' <SZ> , and equation (29) provides a requirement of self-consistency

which determines <sZ> .

For higher spin values equation (29) is replaced by

K(51)

This introduces the new quantity K(SZ)2>, which is not determined

by equation (29). Tahir-Kheli and ter Haar(9)therefore introduce

the Green function to evaluate this quantity, but its

solution introducesK(sZ)5 >. By introducing 2S such Green functions,

and by recalling that (SZ) S + 1 is related by an identity to lower

powers of Sz , they are thereby able to obtain a solution. That

method gets laborious very quickly, but they have given explicit

solutions to S = 3.

By exploiting the functional dependence ofOa) andjon the

parameter a, which was inserted in equation (b) for just this

purpose, bothand:-can be explicitly related to <S > for arbitrary

1
spin, in close analogy with the case of spin .2



I. Relationship of Oto 4sZ>

Calculation of the commutator defining t(a) (eq. (7)) is

facilitated by the identity

[ s 4 ) ] { (s -, - (32)

which is easily corroborated for n = 1, 2 and extended to higher n

by mathematical induction. It follows that

[s; eaS I d-) s
[ s ) e"e OL(33)

and thence

ze Ws> (e )<(34)

Expressing S+S - in terms of Sz by the identity (18),

t&(o) =s S+,)(6 )<e- lx s>)(es'> 4(-( +) e S' ) > (36)

Finally, it is convenient to introduce the quantity

< e > (3b)

and the notation

D- d (3-)
da

Then the two quantities of interest can be written

(38)

and

(39)

The relationship (28) between(ka) andieS(a) can be recast

in a more convenient form as well~by defining

e4Ee W) (40)



whence

(41)

The self-consistency requirement on the Green function is now

contained in the condition

(42)

where

N (415)

This condition should determineO(a), and thence<sZ , which is

just (o), as we see from equation (25). It is more convenient

to determinel(a), and thence to find&(a) by equation (38). In

fact inserting equations (38) and (39) into (42) gives a differ-

ential equation forfJ(a).

+_ _f _ _ _ -0 ( 4 4 )

This differential equation is the analogue of the set of 2S coupled

equations A Tahir-Kheli and ter Haar.

To completely determine the solution we require two boundary

conditions. From the definition (36) we observe

-a.(.o) z i (4s)

The second condition is provided by the operator identity

'S' ( 5*- P ) t-o (,46)

Taking the average of this equation it can be written in the form

TCL (96 ) 0 (47)
_-S



IL

In the Appendix it is shown that the solution of the differential

equation (44) satisfying the boundary conditions (45) and (47) is

fre wih o (48)

from which Sz ore8(a) can be found by differentiation.



6. The Formal Solution

For convenience and clarity we recapitulate the final form of

the equations, preparatory to analyzing their low-temperature and

high temperature behavior, Curie temperature, etc.

Given a spin magnitude S, a temperature T, a magnetic field H,

and an exchange interaction with Fourier components J(', the

quasi-boson occupation number W(- is

-Ie (4.9)

where

> k' - J(K K p (50)

This is an implicit equation for 4.(L, involving the unknown quantity

sZ>. However <sZis given in terms of

(51)

by

< PftZS+) -S (52)

Thus equations (49 ) - (50) constitute a set of coupled equations

which must be solved self-consistently for <SZ
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7. Nearest Neighbor Interaction

For simple lattices with nearest neighbor interaction the for-

malism simplifies markedly. In this case the exchange J(k) is

(53)

where ; goes over the nearest neighbors of a representative ion;

we assume all magnetic ions are crystalographically equivalent. Con-

sider the sum

which appears in equation (50) for E(k-). Then

9~(~K~ji-e(55)lI '

The sum tvpye KI is clearly independent of , by symmetry, so

that it can be replaced by , z- 1 (y iq*) &4 '

where r is the number of nearest neighbors. We thus obtain

v 0) Z K'(56)

where J(o) = 3 is the k = o Fourier component of the exchange

interaction. This equation was first pointed out by Michelene
(it)

Bloch. The sum K""(') 4O(') is a function only of the temperature,

(SZ> , and H (and, of course, of J and the lattice structure).

N> (57)

and



Thus, for simple lattices (including simple cubic, body-centered

cubic, and face-centered cubic lattices in particular) and for

nearest neighbor interaction the simple spin wave energies are re-

normalized by a factor depending only on the temperature (for zero

field), independent of the wave vector k. Equations (57) and (58),

together with the definition of O() in terms of E(k), constitute

a pair of coupled equations for the renormalization function f. For

these lattices and nearest neighbor interaction the complete solution

would be obtained explicitly by solving eqns. (57) and (58) for f,

thereby obtaining (k) orlin terms of T, <Sz> and H. Then eliminating

between this equation and equation (52) would give <Sz> as a function

of T and H.



8. The Low Temperature Region

The summation (or integral) over X involved in the calculation

of§ for H = o occurs in simple spin wave theory and has been carried

out by Dyson(1)and others by standard series expansion procedures

appropriate to low temperatures. Thus, if

E(J R "= 2 SR Vo) I-(; )'] (59)

and if a reduced temperature is defined by
3A T
t g (60)

then(l)

v- + -. - (61)

Similarly

4(&J-:710+- (62)

The constants V and .) depend upon the lattice structure and are

defined by

W zA 331ZZ or Ti fle Cv6, (63)

4 - C f go to -cL,6, C ,JIU. (64)

z: 2.J 6U J o face- -fb )Jfed cux- (65)
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To apply these results to our case we take (compare eqns. (59)

and (58))

~ .- f 1(66)s

The remaining equation is eq. (52) for <SZ~in terms of

expanding it in powers of (which is small at low temperature),

we find

<S > ~ S = ~ + ( & +) I IS41 ~( ZS 4j 4S 1~ (67)

To disentangle the coupled equations we first substitute

equation (66) for R into equation (62), solving for f as a series

in *r.

Inserting this series into equation (61) for we find

Finally, inserting this equation into equation (67) we find

3S f 3,3St . (70)

-k Tr-V ZSC a ..
+ )--S V)S(W



• bP $43/2 ,t S + 5/2
Neglecting, for the moment, the termstn n+

we see that the coefficients of t3/2 O5/2, t7/2 are in exact

agreement with the Dyson result. The term in C
3 is absent, as

required by Dyson. The term involving '4 is given by Dyson(1)as

3 )-I\I5 ) 9 V,
WPjI(S IL (71)

where Q, the ratio the ratio of this term to our t4 term, is

Q [ ~ 5- "IJ' ~(72)
with

z 1( ) 2 o C'(73 )

(74)

Thus our t4 term corresponds to the leading term (Q = 1) of the

Dyson result; that is, to the result which Dyson finds in the first

Born approximation.

The terms 3 S + 3/2, &3S + 5/2 ... in equation (70) seem to

be spuricus results of the Green function approximation. For S = 1/2

they gave incorrect contributions to the t3 and t4 terms. For spin

unity the first spurious contribution appears in the t9/2 term, and

for spin 3/2 it appears first in the Ib term; thereafter it moves

rapidly to higher order in t. Consequently the spurious terms are

of consequence in the low temperature region only for spin 1/2.

Finally, it is of interest to substitute equation (70) into

equations (b9), (08), and (bb), to obtainS, f and the renormali-

zation factor R explicitly as series in t. We thus find



(75)
3

and

ZS++ 3L ~~2 TY/)(hL
It will be recalled that R is the "renormalization factor"; the

ratio of the actual quasi-particle energies to the simple spin

wave energies. At low temperatures the leading temperature depend-

ence of R arises in the %5/ 2 term. Hence the spin wave energies

are renormalized by a factor proportional to the thermodynamic

energy rather than the magnetization in this temperature region.



9. The Curie Temperatures, and the High Temperature Between

Just below the Curie temperature (assuming H = o) the average

magnetization <S2is small, and the mean number of excited quasi-

particles is large. In fact, expanding equation (52) in powers of

we find

(y8)

Furthermore, since E(k) is proportional toCSZ> the exponential in

the Bose distribution can be expanded, giving

~<
N AT 5 1(79)

Multiplying equation (79) by <sz>, and replacing <31> q by

S(S4i)/. (from equation 78) we then have, in the limit <S'>

5 s( n) R 1)_ .
SEI(80)

where F(-l) denotes the summation

(_ 1 Z IT 10
K J-10 ) 

(61)

This summation has been evaluated by Watson; it has the values

Equation (dO) determines the Curie temperature. However we must

evaluate the limiting value of the quantity (" which appears in

that equation. From equation (57) defining f, again expanding the

Bose factor,

or

~ '2 SS[- = J b)4



Eliminating between this equation and equation (W0) we finally

find the equation determining the Curie temperature.

In Table I we give the values ofAt 1/as estimated by Brown and

Luttinger(3 by extrapolation of the series expansion for the sus-

ceptibility in powers of l/T. We also list the values obtained by

Tahir-Kheli and ter Haar (9 ), and the values calculated from equation

(65). It will oe noted that our values are higher than those of

Brown and Luttinger, whereas those of Tahir-Kheli and ter Haar are

lower. For spin 2 the deviation of our results from the Brown and

Luttinger values is of the order of 3%, and the agreement improves

with increasing spin. In fact Domb and Sykes have recently pub-

(4)L P
lished an estimate of the limiting value rSLs+_ for large S, for

the face centered cubic lattice. This estimate was obtained by a

painstaking examination of the systematics of the extrapolation of

high temperature series. They obtain the value of 6.384, with

which our value of 6.45 agrees within 1%.

Domb and Sykes also give estimates o Tc/J for S = and

S = 1 only, for the face-centered cubic lattice; their values are

4.07 and 11.95 respectively. These are lower than the Brown and

Luttinger results, and further aggravate the disparity between our

values and the estimated values for these small spins. It is

apparent, both from the Curie temperatuees and from the low tempera-

ture results, that our approximations are more reliable for large
1

spin, being particularly bad for spin L. Fortunately most cases of

practical interest are associated with spins greater than ., for which

the results appear to be quite reliable.



TABLE I

Curie Temperatures for Cubic Lattices, Nearest Neighbor Interaction

I Simple Cubic _ ,Body Centered Cubic jFace Centered Cubic

S Brown T-Kheli Callen Brown T-Kheli Callen Brown T-Kheli Callen
Lutt. toHaar Lutt. t Haar Lutt. t.Haar

1 1.9 2.0 2.7 2.39 2.9 3.7 4.2 4.5 5.6

1 5.4 5.3 6.5 7.82 7.7 9.1 12.7 11.9 13.9

10.6 9.4 11.2 15.42 14.4 16.6 24.7 22.3 25.52"

2 17.5 15.8 17.9 25.17 23.0 26.2 40.0 35.7 4o.1

5 25.8 23.1 26.8 37.10 33.5 37.9 58.7 52.1 58.3

3 35.7 31.6 36.4 51.19 45.9 51.6 80.9 71.4 79.5

For the face-centered cubic Domb and Sykes(4)give

Lim (ATc = 6.38 (Domb and Sykes)

= 5.95 (Tahir-Kheli and ter Haar)

= 6.45 (Callen)
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It should, perhaps, be noted that the Curie temperatures are

quite sensitive to the decoupling parameter o(, of equation (20).

If the chosen value ofrwere to be multiplied by

where E- is any positive constant no matter how small, the Curie

temperatures would become identical to those obtained by Tahir-

Kheli and ter Haar, whereas the low temperatures and the high

temperature behavior of the theory would remain unaltered.

Finally, the high temperature expansion of the susceptibility

is of interest. We assume <sZ>small, and maintain only terms pro-

portional to the applied magnetic field. Equation (78) remains

valid, equation (79) contains the additional Zeeman term, and the

analogue of equation (80) becomes

,A3 N S

Similarly the analogue of equation (83) is

-t T TKj)2 (87)

It is convenient to denote

(88)

and to define a quantity lp by

"S II A = s<!1+# 0 +s (89)

1A, zhA



Then multiplying equation (86) by [1 4 2. Jt6)X

and equation (87) by ST(O)X

and adding, we find

3S (90)

Furthermore, expanding the summand in equation (86) we find

r ZTO Li -eO) -k ___

b+'I+A1I>A . A X % 1 -4- (91)

In this summation we have employed the identities

((92)

where

K Tb) (93)

The quantity X can now be eliminated between equations (90) and (91),

enabling -4I to be evaluated in a series in l/T. In this way we find
,A z" S(S+I)) - +-- o-( S- ._. O(-L)" ]  (94)

where T is the Curie temperature of the molecular field theory:
11. -1qTS( S+I) (95)

The two leading terms in this expansion are in agreement with the

values found(3)by a rigorous expansion of the susceptibility in

powers of l/T.
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Appendix

It is easily corroborated that the solution of the differential

equation (44), satisfying the boundary conditions (46) and (47) is

12 +71

where
e"

x

41J( O- ('+ e'O- (A.2)

The evaluation of the derivatives 0 (, is then

required to reduce this result to equation (48). Consider

~~- (A-3.)

where

(A.5)

Expanding in powers of y, and noting that A -

we find

AIM- Thr (n-4o) (A.6)

We now take a = o (or y = 1), let x = S + 1, and change variables from

n to m = n- and from p to r = S -p. Then

Similarly, taking a = o, letting x = -S and changing variables from

n to m = n - S - 1, and from p to r = S + 1 - p we find
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J(-S ) _- (A.8)

From equations (A.7) and (A.8) we note that the ratio of the re-

levant quantities is

_ - (A.9)

Finally inserting this ratio into equation (A.1) gives equation (48).
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